
Mathematical Foundations of Qualitative Reasoning
L. TRAVE-MASSUYES*, L. IRONI**1, P. DAGUE***

* LAAS-CNRS
7 avenue du Colonel-Roche

31077 Toulouse cedex 4 – France

** IMATI - CNR
via Ferrata 1

27100 Pavia – Italy

*** LIPN-UMR 7030, Institut Galilée
Université Paris 13

99 avenue Jean-Baptiste Clément
93430 Villetaneuse – France

ABSTRACT

We examine different formalisms for modeling qualitatively physical systems, and their
associated inferential processes that allow us to derive qualitative predictions from the
models. We highlight the mathematical aspects of these processes along with their
potential and limitations. The paper then bridges to quantitative modeling, highlighting
the benefits of QR-based approaches in the framework of system identification, and
discusses open research issues.

1.!Modeling physical systems qualitatively
The need to represent physical systems by models is common to all scientific and engineering
domains. But the modeling process encounters difficulties from both ends: a model must
adapt to the knowledge available and to the task it is built for. The possible limitations of
traditional numeric methods with respect to these problems mean qualitative models may be a
good alternative:

• qualitative models cope with uncertain and incomplete knowledge;

• a qualitative model output equals an infinity of numerical runs that are obtained at once
in compact form;

• the qualitative predictions provide the relevant qualitative distinctions in the system's
behavior;

• the modeling primitives allow for a more intuitive interpretation.

                                                  
1 Liliana Ironi has been more particularly in charge of section 4, together with some editing of the whole paper.
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A system’s evolution may be tackled in discrete terms, by defining states and events that
trigger transitions between states. This is generally the adopted point of view when
continuous dynamics of behavior are not relevant. The originality of QR is to provide an
intermediate level between discrete event and continuous models, in which the state space is
discretized into a number of finite states, and transitions between those states obey continuity
constraints [26][13][55].

Let us illustrate these ideas with the well-known pressure regulator (without friction)
example:

QP Pi o

F

V

Figure 1 — The pressure regulator

Q is the fluid flow through the pipe, Pi and Po are the input and output pressure respectively,
V represents the opening or closing speed of the valve and F the force that acts on the piston.
If the domains of the variables are abstracted into a finite number of values, for example if we
only retain their signs, the possible behaviors of the pressure regulator are all captured by the
following finite state automaton, so called envisionment in QR [17].
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Figure 2 — The pressure regulator envisionment

Every state corresponds to the indicated variables qualitative values and the arrows represent
the transitions betweens states. Circled states are instantaneous states whereas squared states
have a positive duration. Starting from an initial state, the possible system’s (qualitative)
behaviors are obtained as a sequence of chronologically ordered states from the different
paths in the automaton. For instance, the sequence [4, 5, 4, 5, 1, 2] represents a behavior in
which F first oscillates between 0 and positive value (with V negative), and then becomes
negative while V becomes 0.

Domain abstraction, which abstracts the real domain value of variables into a finite number
of ordered symbols, is at the core of QR. This is complemented by functional abstraction,
which allows one to state incompletely known functional relationships between quantities.
For instance, one might want to say that the flow through a valve increases with the pressure
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difference, without specifying the particular function. Knowing some of their properties, such
as monotonicity, is often sufficient to constrain the behavior of the variables. This is all
associated with inferential processes, which perform on the quantities consistently with their
numeric counterpart. They allow us to derive qualitative predictions of the system’s state, and
to perform simulation when the system is dynamic. We highlight the mathematical aspects of
these processes along with their potential and limitations, with particular emphasis on
qualitative simulation.

Sections 2 and 3 of the paper are concerned with the questions:

• How can we compute the qualitative states of a system at a given time point? This
comes back to dealing with static models (traditionally represented by algebraic
equations), for which resolution techniques have been proposed for different qualitative
formalisms.

• How can we deal with temporal evolution and dynamics? This puts the focus on
dynamic models (traditionally represented by Ordinary Differential Equations (ODE's)),
for which behavior prediction calls for qualitative simulation techniques.

The last part of the paper shows that some limitations of QR [52] may be significantly
reduced by the integration of such methods with either further knowledge on the
mathematical properties of the specific system at study or partial quantitative knowledge or
more sophisticated mathematics, borrowed for example, from system theory. The paper also
highlights the need for QR-based approaches in the framework of quantitative modeling, to
perform soundly and efficiently quantitative system identification. Finally, the paper
concludes by discussing some open research issues.

2. Domain abstraction and the computation of qualitative states
The central idea of QR is domain abstraction: it abstracts the value domain of continuous
variables, which is generally the real line, into a finite number of ordered symbols
representing qualitative values that make real behavioral distinctions. This is performed by
identifying for each variable a set of distinguished points called landmarks, noted li, which
partition the real line ¬.

Landmarks may be either numeric or symbolic as only their ordinal relationship is relevant.
The qualitative value of a variable is either a landmark or an open interval between two
adjacent landmarks. The finite, totally ordered set of all the possible qualitative values of a
variable is called its quantity space. The quantity space may contain the landmarks –•, 0 and
+•. For example, a natural set of landmarks for the temperature of water is given by:

AbsoluteZero Freezing Boiling ∞

Figure 3 — Landmarks for the temperature of water

It is obviously desirable that the mapping Q from real numbers to a finite quantity space
verifies some properties. Real operators, op, e.g. arithmetic operators, are qualitatively
abstracted into operators Q-op. For example, if op is a binary operator, Q-op is usually
defined as: a Q-op b = {Q(x op y) | Q(x) = a and Q(y) = b}. More generally, a set C of real-
valued constraints involving several operators can similarly be abstracted into a set of
qualitative constraints Q(C). Let us note Sol(C) the set of all real solutions of a set of real-
valued constraints C and Q-Sol(Q-C) the set of all qualitative solutions of a set of qualitative
constraints Q-C. Then we define the two following properties:
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• Q is said to be sound iff Q(Sol(C)) Õ Q-Sol(Q(C)) for any C, which is also equivalent to
»C|Q(C)=Q-CQ(Sol(C)) Õ Q-Sol(Q-C) for any Q-C. It means that qualitative solutions of
qualitative abstracted constraints capture the abstractions of all real solutions of real
constraints, but some qualitative solutions may be spurious, i.e. they do not correspond
to any real solution of any real constraints compatible with the qualitative constraints.

• Q  is said to be complete iff Q-Sol(Q-C)) Õ »C|Q(C)=Q-CQ(Sol(C)) for any Q-C, which
means that each qualitative solution of a set of qualitative constraints is the abstraction
of a real solution of a set of real constraints compatible with the qualitative constraints,
but some real solutions may not be captured.

Ideally, we want Q to be sound and complete, but we will see that this is generally not
achievable.

Different domain abstractions capture different ways of reasoning qualitatively used by
humans. In particular, the different intervals of the partition can be identified as orders-of-
magnitude. The signs partition is a particular case, which has been extensively used first by
economists [45] then by the QR community [17] to formalize reasoning about tendencies. In
the following sections, we present the mathematical structures, and focus on the mathematical
soundness of the formalisms.

2.1!Reasoning about signs
Signs are very useful to reason about the direction of change of variables describing a
physical system: +, –, and 0 are used when the variable increases, decreases and does not
change, respectively. The problem is to manipulate these signs so as to derive the direction of
change of unknown variables, or in other words to compute the (signed) qualitative state of a
system.

Consider a resistor as in figure 4 and Ohm’s law, which represents its physical behavior:

U

I

R

Figure 4 — A resistor

(eq. 1) U=RI

where R is the resistance value, U is the voltage and I the current. A simple analysis shows
that, if we know that U increases, and that R remains steady, then I must also increase. To
capture the various qualitative relations of this kind implied by equation (1), we write a
confluence [17], that is a constraint on the signs of the directions of change of variables:

(eq. 2) ∂U ≈ ∂R + ∂I

and the idea is to implement the well-known combinations of signs, such as ‘(+) + (+) = (+)’.
This is possible in the proper mathematical framework provided by sign algebra.

Let us consider the set S = {+, 0, –, ?}, in which the element ? is interpreted as ‘undetermined
sign’ or ‘ambiguity’, and let us define the addition and multiplication of signs as in Table 1.
The element ? is important to guarantee that addition is a closed operator, e.g. (+) + (–) is
defined as ?.
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+   0   +   -  ?

0   0   +   -  ?

+   +   +   ?  ?

-   -   ?   -  ?

?   ?   ?   ?  ? 

*   0   +   -  ?

0   0   0   0  0

+   0   +   -  ?

-   0   -   +  ?

?   0   ?   ?  ? 

Table 1— Addition and Multiplication of signs

Whereas the relation = denotes the standard equality, ≈ is defined on S as follows:

For any a and b belonging to S,

a ≈ b iff a = b or a = ? or b = ?.

≈ is called qualitative equality, and can be interpreted as sign compatibility.

The algebraic properties of sign algebra have been extensively studied [19][53][57]. Some
basic algebraic properties are:

Quasi-transitivity of qualitative equality:

If a ≈ b and b ≈ c and b ≠ ?, then a ≈ c.

Compatibility of addition and qualitative equality:

a + b ≈ c is equivalent to

a ≈ c – b

Qualitative Resolution Rule:

Let x, y, z, a, b be qualitative quantities such that

  x + y ≈ a

and –x + z ≈ b

If x is different from ?, then

 y + z ≈ a + b

Coming back to our confluence (eq. 2), and assuming that ∂U=+ and ∂R=0, then (eq. 2)
becomes (+) ≈ (0) + ∂I and it is easy to deduce that ∂I ≈ (+), which is the correct answer.

The simplistic example of the resistor can be generalized to much more complex systems,
composed of many components. The whole system qualitative model is then obtained by
assembling the components’ confluences, resulting in a set of confluences. The property that
xi=x or –x for x Œ S means that we generally have to deal with qualitative equations that are
linear. Such a set of confluences can be written in matrix form as AX ≈ B, where A is a matrix,
X the vector of variables (variations), and B the (constant) right-hand side vector, and is
referred to as a Qualitative Linear System (QLS).

Mathematical properties of QLSs have been extensively studied [53], and interesting notions
such as qualitative rank and hard components have been defined, in relation with the problem
of solving QLSs to compute the qualitative state of the system [54][55]. An important result is
that, unlike other more sophisticated qualitative algebras (cf. section 2.2.1) the results of
processing signs are not only sound but also complete for QLSs [55].
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2.2!Reasoning about orders-of-magnitude

2.2.1!Absolute orders-of-magnitude
Absolute order-of-magnitude (AOM) models subsume and generalize the sign model. They
allow one to characterize quantities with better distinctions than just signs. A common AOM
model constructs S by partitioning the real line into 7 classes corresponding to the labels:
Negative Large (NL), Negative Medium (NM), Negative Small (NS), Zero (0), Positive Small
(PS), Positive Medium (PM) and Positive Large (PL) (cf. figure 5).

NL NM NS PS PM PL
0-b -a a b

Figure 5 — The AOM(3) model

The AOM models rely on a partition of ¬ which defines the quantity space S1 based on a set
of real landmarks including 0. S1 generates the complete universe of description S of the AOM
model as follows:

S = S1 » {[X, Y] | X, Y Œ S1–{0} and X  < Y}

where X < Y means that "x Œ X, "y Œ Y, x < y in the sense of inferiority in ¬, and the label
[X, Y] is defined as the smallest interval of the real line, with respect to the inclusion, that
contains X and Y. If we now consider in S the order relationship induced by the inclusion, i.e.
for any pair x, y Œ S, x £ y iff x Ã y, we obtain a semi-lattice structure as shown in Figure 6(a),
built up from the most precise to the least precise level. The sign model can be constructed in
the same way from the sign partition, as shown in Figure 6(b).

NL NM NS PS PM PL

[NL ,NM] [NM ,NS] [NS ,PS] [PS ,PM] [PM, PL]

+- [NM,PS] [NS, PM]

PM][NM,[NL, PS] [NS, PL]

[NL,PM] [NM,PL]

?

o                            

?

+ -o
                            (a)                                                                       (b)

Figure 6 — (a) Semi-lattice structure of (S,≤); (b) Semi-lattice structure of the sign model
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Qualitative equality can now be formalized in a general way (generalizing sign
compatibility), conveying the idea of possibility of being equal, i.e. possibility that the items
coincide at a higher precision level:

x, y Œ S, x ≈ y iff there exists z Œ S such that z £ x and z £ y.

Let us now define two internal operators in S, a q-sum ⊕ and a q-product ƒ , which are
consistent with the real sum and product. It has been shown [40][41][57] that ⊕ and ƒ are
compatible with ≈, are both Q-associative, Q-commutative2, and are such that ƒ is distributive
with respect to ⊕. Then, (S, ⊕, ƒ,≈) is defined as a Q-algebra (Qualitative algebra of orders
of magnitude).

For a given number of qualitative labels, the partition of ¬ is not unique, since dependent of
the landmarks numerical values. It is hence difficult to define symbolic operations by tables
and we must use the concept of qualitative function associated to a real function, which
generalizes qualitative operators. Interesting properties referring to the reversibility of a
qualitative relationship and the existence of a qualitative inverse are shown in [57]. The
operators ⊕ and ƒ, also noted + and ¥ when not ambiguous, are Q-reversible: (A + B ≈ C) ¤
(B ≈ C – A)3. Hence in particular: (A ≈ B) ¤  (B –  A ≈ 0), this equivalence being only true
because 0 is an element of S. Similarly, if A is not qualitatively equal to 0, we have (A ¥ B ≈ C)
¤ (B ≈ C ¥ (1/A)). If however A ≈ 0 but A ≠ 0, 1/A exists and equals ?; hence the equivalence
is still true even if it results in B ≈ ?.

The qualitative negation [–A] (associated to real negation) can also be considered. It satisfies
that for all A Œ  S, [–A] = –A iff the partition is symmetric, in which case [–A] is the
qualitative opposite of A. But, as pointed out in [52], some severe limitations exist due to the
lack of strict associativity and distributivity. For instance, the result of a sequence of
qualitative operations is not independent of the order in which the operations are performed.
The different results are however always qualitatively equal, which actually means that the
« minimality » of the solution is not guaranteed, or in other words that the solution is sound
but incomplete. This is one of the origins of spurious behaviors in qualitative simulation, as
will be presented in section 3.

2.2.2!Relative orders-of-magnitude
Another way to view orders-of-magnitude is by establishing comparative relations between
quantities. This is typically the way physicists and engineers proceed, by considering two
quantities as negligible, comparable, or close. A typical example is the way a transistor is
explained to students, as having the base current negligible with respect to the emitter current,
which is in turn close to the collector current.

Relative orders-of-magnitude (ROM) relations can be defined as binary relations, which boil
down to a difference of values or a quotient of values belonging to an absolute partition. The
first type is based on relations invariant by translation whereas the second type is based on
relations invariant by homothety. Because, they are closer to human intuition, all the ROM
models proposed in the literature are based on binary relations ri invariant by homothety, i.e.
A ri B only depends on the quotient A/B. Their axiomatization is described by a set of rules.

The first ROM model FOG [43] was based on three relations, "negligible with respect to"
(Ne), "close to" (Vo) and "comparable to" (Co, in the sense of "the same sign and order of

                                                  
2 Same definitions as associative and commutative, by replacing = by ≈.
3 Qualitative subtraction is defined as the qualitative function associated to real subtraction.
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magnitude as"), and included 32 inference rules which were proven to be true when giving the
relations an interpretation in the field of real numbers of N.S.A. (Non Standard Analysis)
[46], which roughly speaking is obtained from ¬ by adding infinitely small and infinitely
large numbers.

Reasoning with FOG can be illustrated through a simple example of mechanics [43]: the
impact of two masses of very different weights, M and m, coming from opposite directions
with close velocities Vi and vi (cf. figure 7).

-vi

Vi

Figure 7 — Example of two masses

The two laws of momentum and energy conservation express that both MV + mv and MV2 +
mv2 remain the same before and after the impact. Considering only the signs it is impossible
to predict the directions of the masses after the impact. FOG makes it possible to use the
assumptions: m Ne M and Vi Vo –vi to correctly predict that the larger mass keeps the same
direction while the smaller one changes direction. Furthermore, one can deduce that the velo-
city of the larger mass after impact remains close to that before impact and the velocity of the
smaller one after impact becomes close to three times that before impact.

The ROM models that were developed later improved FOG not only in the necessary aspect
of a rigorous formalization, but also permitting the incorporation of quantitative information
and the control of the inference process, to obtain valid results in the real world.

The formal model ROM(K) [15] proposed to add the relation Di standing for "distant from".
The four binary relations Ne, Vo, Co, Di, are defined by means of 15 axioms, which provide
about 45 inference rules. ROM(K) has a nice symmetrical property and the ability to express
gradual changes from one order-of-magnitude to another thanks to the existence of
overlapping regions when interpreted in N.S.A.

It was then shown [14] how to transpose ROM(K) to ¬ with a guarantee of soundness,
resulting in the system ROM(¬). ROM(¬ ) permits the incorporation of quantitative
information and obtains sound results while maintaining the semantics of the inference paths
in terms of the four symbolic relations of ROM(K). ROM(¬) relations, negligibility at order k
(Nk), proximity at order k (Pk) and distance at order k (Dk), are defined in ¬, parameterized by
a positive real k. For instance, given two real numbers x and y, then x is defined to be
negligible at order k or k-negligible with respect to y, x Nk y, if |x |≤ k|y|.

The above defined relations are matched to ROM(K) relations using two parameters k1 and k2

in the following way: Vo ´ Pk1, Co ´ P1-k2, Ne ´ Nk1, Di ´ Dk2. A first group of ROM(K)
axioms is satisfied for any k1 and k2. A second group requires the following constraint: 0 < k1

≤  k2 ≤ 1/2. The remaining axioms cannot be satisfied in ¬. For those, [14] proposes to
calculate the order-of-magnitude precision loss of the conclusion in the worst case. Note that
ROM(¬) subsumes the O(M) model proposed earlier [37], which corresponds to the case
k1=k2.

ROM models consistent with ¬ can be viewed as AOM models with respect to the quotients
of quantities. The two degrees of freedom of ROM(¬), i.e. the parameters k1 and k 2,
determine the landmarks of the partition. For instance, we have x Ne y if and only if x/y



Mathematical Foundations of Qualitative Reasoning

9

belongs to [-k1, k1]. A recent piece of work [56] has bridged ROM(¬) and AOM models,
examining under which conditions these models are fully consistent. Absolute qualitative
labels of two quantities can be interpreted in terms of the corresponding relative relation(s),
and conversely.

The results produced by a strict interpretation of ROM models grounded in ¬ generally differ
from what humans produce. A heuristic interpretation was even proposed for O(M),
borrowing some rules not interpretable in ¬  from FOG. This leads to the conflicting
conclusion that strict ¬ based interpretations, although providing sound results, do not match
human ROM reasoning but heuristic interpretations are not intellectually satisfying because
they are not sound!

2.3!Other models
Pushing orders-of-magnitude at their limits leads one to consider dominant parameters as the
only parameters and humans often adopt the analysis performed under these assumptions. This
is known as exaggeration reasoning: in [38], infinitesimals represent the order-of-growth of a
logarithmic-like function and are used to perform asymptotic analysis; in [59] exaggeration is
used in conjunction with differential qualitative analysis techniques; in [39] comparative
analysis is used for simulation; in [60] caricatural reasoning is used for decompositional
modeling.

At the other end, reasoning about intervals, i.e. about ranges of values, is frequently used in
QR. The intervals formalism provides more flexibility than quantity space based models but
the fact that intervals are not mapped onto qualitative labels makes their semantics weaker. A
whole sub-field of AI is devoted to this topic, known as numeric CSP (Constraint Satisfaction
Problems), which use consistency techniques based on interval arithmetic [35].

3.!Qualitative simulation
Most physical systems exhibit dynamics that cannot be ignored. Then, dynamic models,
traditionally represented by Ordinary Differential Equations (ODEs), are required. The
question of dealing with temporal evolution and dynamics within a qualitative framework is
answered by qualitative simulation.

From a historical perspective there are three main approaches to reasoning about dynamic
systems: the component centered approach of ENVISION by de Kleer and Brown [17]; the
process centered approach of QPT by Forbus [21]; and the constraint centered approach of
QSIM by Kuipers [30][31]. A flavor of the ENVISION approach has been given in section
2.1. It is based on confluences and adopts a quasi-static point of view. QPT is grounded on
two fundamental concepts: Individual Views, which represent objects or sets of objects
viewed from a particular perspective, and Processes, which represent active changes taking
place [21]. QSIM ignores the model-building task and focuses on qualitative simulation. A
QSIM model is indeed simply given by a set of Qualitative Differential Equations (QDEs),
which are defined as an abstraction of ODEs.

All three approaches have been extremely influential on QR. As QSIM shows a strong
relationship with numerical simulation and allows for the integration of mathematical results
related to ODEs, it has become the reference in terms of qualitative simulation over the years.
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3.1!Time representation
The first question to be answered about time is whether it should be qualitatively abstracted,
like other variable values, or not. But the answer depends on the task.

If the objective is to track the behavior of a system along time, based on observations
delivered by sensors at given sampled time points, it is natural to consider these numerical
time points as landmarks on the time axis. Determining the qualitative state can be performed
at each time slice independently, by checking for consistency the qualitative model against the
observations. This so-called state-based approach [50] is like dealing with a succession of
static models. For a variable x, no relationship is expressed between dx/dt and x.

Most efficiently, some mathematical properties about transitions between time points, such as
continuity or differentiability along time, can be used to constrain the behavior of the
variables. For example, let's assume x=a at time point t, and x=a at time point t’, t’>t, as well.
Then if x is continuously differentiable, dx/dt necessarily equals 0 at one (at least) time point
between t and t’.

However, this is often insufficient and it is necessary to take advantage of the relationship
between a variable and its derivative. Both have values in a finite quantity space made up of
landmarks and the intervals between landmarks. A linear interpolation is generally used,
which leads to a constraint between x(t), dx/dt(t) and x(t+1). As uncertainty on the variable
gives rise to much higher uncertainty on its derivative, in most of the applications, the
quantity space used for the derivatives is signs, i.e. the direction of change of x is decreasing,
steady, or increasing.

Continuity and differentiability assumptions can be expressed, like in QSIM, in the form of
transition tables for pairs <x, dx/dt>. These are obtained from the intermediate value and the
mean value theorems. Time points are defined as the instants at which the qualitative state of
the system changes, that is at least one variable or derivative reaches or leaves a landmark of
its quantity space, as illustrated in figure 10 on the variable plots of the bathtub simulation.
Transitions hence apply either from one time point to the time interval starting at this time
point (P-transitions) or from one time interval to its ending time point (I-transitions). Time
consists thus of a series of alternating points and open intervals between the points. The time
points are not mapped onto physical time, they are just symbolic instants on which transitions
occur as in discrete-event models. The transition tables capture the constraints for a one-step
prediction. They can be iteratively applied over several steps, achieving qualitative
simulation.

Given lj–1, lj and lj+1 three adjacent landmarks in some variable quantity space, an example of
QSIM P-transitions and I-transitions starting from the same state is:

P1   <lj, std>            Æ   <lj, std>

P2   <lj, std>            Æ   <(lj, lj+1), inc>

P3   <lj, std>            Æ   <(lj–1, lj), dec>

I1    <(lj, lj+1), inc>   Æ   <lj+1, std>

I2    <(lj, lj+1), inc>   Æ   <lj+1, inc>

I3    <(lj, lj+1), inc>   Æ   <(lj, lj+1), inc>

I4    <(lj, lj+1), inc>   Æ   <(lj, lj+1), std>

A consequence of this time representation is that when two transitions are possible, for
example x reaching landmark a and y reaching landmark b, very often the qualitative model
does not constrain the ordering of these two events, which gives rise to temporal branching on
whether one event occurs strictly before the other (and which one) or they occur
simultaneously.
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Paradoxically, qualitative time representation formalisms, such as the popular Allen algebra
based on 13 primitive qualitative relations between two time intervals (such as before, after,
beginning, ending, during, etc.) [1], do not fit within the qualitative simulation framework.
The same is true for qualitative spatial models [12], which form a separate set of approaches.

3.2!Functional abstraction through qualitative constraints
Very often, the functional relationship existing among a set of variables is abstracted through
the use of relations instead of functions used in section 2. For instance, addition over the signs
was defined as a function +: S¥S ÆS in section 2.1, but can be considered as a relation:
S*¥S*¥S* Æ{true, false}, where S*=S\{?}. By doing so, uncertainty propagation is lower.

This can be generalized to several types of qualitative constraints, which restrict the set of
possible values of the variables. Constraint satisfaction techniques can then be used to check
consistency. To illustrate this issue, let’s take QSIM. For representing the behavior of a
system, QSIM uses three kinds of qualitative constraints:

• Arithmetic: ADD(x, y, z) for z = x + y, MULT(x, y, z) for z = x.y, MINUS(x, y) for x =
–y;

• Differential: DERIV(x, y) for y = dx/dt;

• Functional: M+(x, y) (M–(x, y)) for y = f(x) and f is a strictly monotonically increasing
(decreasing) function of x, i.e. y = f(x) with f differentiable and f' >0 (f’<0).

Non-monotonic and multivariate qualitative constraints can also be defined [31]. In the
bathtub example provided in section 3.3, the relationships between pressure and level and
between level and volume are specified as M+ and system’s dynamics comes from the
constraint between volume and netflow, which is differential.

Constraints can be made more specific by means of corresponding values, which are tuples of
landmarks from variables appearing in the constraint. For example, a correspondence <l1, l2>
for M+(x, y), where l1 and l2 are landmarks, means that x is l1  when y is l2. In the bathtub
example, the M+ constraint between volume and level has two corresponding values (0
0) and (full max). The proper choice of landmarks has critical impact on the qualitative
simulation results. Irrelevant landmarks may indeed cause undesired branching.

A QDE has generally a limited domain of validity. First, the quantity space of some variables
can be restricted as in the bathtub example for which 0 is the lower bound of the quantity
spaces of the volume, level, pressure, outflow, inflow variables. Second, different
operating regions can be specified. Discontinuities can be modeled by means of operating
region transitions, triggered on detection of a variable taking some qualitative value. The
bathtub model specifies one such transition, indicating that as soon as the qualitative value of
volume is <full, inc>, then the bathtub overflows. Hence simulation within that region
stops or is resumed in another operating region, corresponding to another QDE.

3.3!The QSIM simulation of the bathtub example
Let’s consider the bathtub of figure 8. The bathtub is filled in with a constant inflow and has
a drain, which evacuates an outflow. The initial state is an empty bathtub. The other
variables are the volume and the level of water, and the bottom pressure. We assume that
we do not know the exact values for inflow and outflow, neither the physical dimensions of
the bathtub but we want to predict the behavior of the bathtub.



Mathematical Foundations of Qualitative Reasoning

12

Figure 8 — The bathtub

(define-QDE Bathtub
(quantity-spaces

(volume (0 full inf))
(level (0 max inf))
(pressure (0 inf))
(outflow (0 inf))
(inflow (0 f* inf))
(netflow (minf 0 inf)))

(constraints
((M+ volume level) (0 0) (full max))
((M+ level pressure) (0 0) (inf inf))
((M+ pressure outflow) (0 0) (inf inf))
((ADD netflow outflow inflow))
((d/dt volume netflow))
((constant inflow))))

(transitions
((volume (full!inc)) ->!tub-overflows)))

Figure 9 — QSIM model of the bathtub

The QSIM model of the bathtub is given in figure 9. Qualitative simulation starts from the
initial state, and repeatedly generates all possible successor states. As in general the successor
state cannot be determined uniquely, QSIM branches on every possibility. This potential for a
branching sequence of events is an important difference between qualitative and numerical
simulation. QSIM thus builds a tree of states: nodes are system states and edges are transitions
between states; a behavior is a path from the root of the tree to a leaf. The behavior tree for
the bathtub given in figure 10 shows three possible behaviors: the level stabilizes under max,
at max or overflows.

A leaf of the tree of states is obtained when a state is a ‘no change’ state, i.e. its successor
would be identical, or is a cycle, i.e. is identical to one of its predecessor or is quiescent, i.e.
all the directions of change are steady which means that the state is an equilibrium state, or
contains at least one variable taking on an infinite value.
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full

P-state

equilibribrium state

transition state

I-state

volume level pressure

inflow outflow netflow

BEHAVIOR 1!: Overflow

Figure 10 — Bathtub behavior tree and variables plots for behavior 1 (bathtub overflow)

3.4!Behavior abstraction
Qualitative models are a proper abstraction of real-valued models, in the sense that they
represent a class of real-valued models. The structural abstraction theorem of QSIM proves
that each ODE can be abstracted into a QDE such that any continuously differentiable
function that is a solution of the ODE also satisfies the QDE. Conversely, a QDE is an
abstraction of a whole class of ODEs.

The behavior abstraction theorem states, illustrated by figure 114, that the behavior of a set of
continuously differentiable functions F={f1,...,fn} defined over a bounded interval [t0, tn] can
be uniquely abstracted into a qualitative behavior QB(F, [t0, tn]) given by a sequence of
qualitative states. But in general, the same qualitative behavior corresponds to a whole class
of continuously differentiable functions.

qualitative simulation

numerical simulation

analytical resolution

QDE

f(t) : [t0, tn]—> ¬c

QB(f, [t0, tn])

AbstractionAbstraction

ODE

Figure 11 — Behavior qualitative abstraction

                                                  
4 ¬c = ¬ » {–•, +•}.
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3.5!Properties of qualitative simulation
From the results in section 3.4, it can be shown that, given a QDE, qualitative simulation
generates all the qualitative behaviors corresponding to the solutions of any ODE in the
abstracted class. However, generated behaviors eventually include so-called spurious
qualitative behaviors. Qualitative simulation is hence sound but incomplete.

Spurious behaviors are an undesirable feature and many solutions have been provided,
depending on the cause: spurious qualitative states [52], spurious state transitions [33], or
spurious sequences of qualitative states [23] [34]. But in spite of the proposed solutions,
qualitative simulation has been recently demonstrated inherently incomplete [49].

Another important problem is that the number of possible (non-spurious) behaviors may be
enormous, causing the behavior trees to be intractable and difficult to interpret. Among the
causes of this problem are occurrence branching, due to incomplete specification of the
functions leading to irrelevant qualitative distinctions, and chattering variables, which are
totally unconstrained variables [11][33].

3.6 Towards integrated approaches: combining quantitative and qualitative
knowledge
Qualitative simulation approaches, exemplified by QSIM, are trapped in the local nature of
the algorithm and the specific formulation of a qualitative model in terms of constraints.
Alternative approaches, of three types, have been proposed, which have been shown powerful
and can be viewed as contributions towards a unified modeling approach:

• Use more quantitative information, like the semi-quantitative simulation approach
including (1) quantitative extensions of QSIM like Q2 and Q3 [32][6] which preserve
the underlying qualitative semantics; (2) interval model based simulation [2]
[44][42][25].

• take benefit of results in the area of systems theory, like the qualitative phase space
analysis approach [48][18][7][16].

• integrate QR with traditional engineering modeling approaches like numerical
simulation or system identification. The first is exemplified by the self-explanatory
simulation stream [22] and the latter is presented in more details in section 4.

4. System Identification: the need for QR-based approaches
System Identification (SI) [36] aims at deriving a quantitative model of a dynamic system
from observations of its outputs in response to inputs. SI is crucial in science and technology
as it allows us to get insights into a great deal of domains, and to perform a wide spectrum of
tasks where quantitative information about the system dynamics is required. It is a quite
complex process that basically involves the experimental data, and a model space where to
search for the "best" model. The construction of the model space strictly depends on the
available domain knowledge: when it is sufficient to represent the underlying physics of the
processes involved (gray box system), the model space, generally ODE's, is derived by the
proper combination of the physical laws; when knowledge of the internal system structure is
incomplete or no first principles are available (black box system), the model space is
represented by opportune function classes, generally nonlinear, that approximate the
functional relationship between system inputs and output. In both frameworks, SI mainly
occurs in two phases:



Mathematical Foundations of Qualitative Reasoning

15

• Structural identification: selection within the model space of the equation form;

• Parameter estimation: evaluation of the numeric values of the equation unknown
parameters from the observations.

Structural identification is a crucial and difficult step. In the gray case, an initial guess of
candidate models is suggested by the qualitative properties of the observed behavior, but it is
feasible only if the modeler's background includes thorough knowledge of both mathematics
and the specific domain. In the black case, it concerns the choice of the appropriate function
complexity; here, the major drawback regards the result accuracy: the built model does
reproduce the observations but does not capture the underlying physical reality. This may
yield the inadequacy of model predictive capability in many cases, e.g. when the data sample
is either small or noisy. In both contexts, the parameter estimation problem may also be ill
posed, and it may not converge to the true solution if a "good" guess of the parameter vector
is not provided.

QR techniques naturally complement both approaches: in one case, they allow us either to
supply with the necessary knowledge or to emulate the expert's reasoning about structural
identification; in the other, when the box is not completely black which quite often occurs,
they allow us to easily choose the proper equation complexity but above all to embed a priori
knowledge with a significant gain in model robustness. To highlight the considerable
advantages offered by QR-integrated approaches, we consider gray and black box systems,
separately.

4.1!Gray box systems
RHEOLO [10], SQUID [29], and PRET [8] are the most significant results of the application
of QR methods to differential modeling. SQUID, based on QSIM semi-quantitative
extensions, only deals with the refinement of a single semi-quantitative differential equation
that represents the whole model space; whereas both RHEOLO and PRET deal with
automated SI, and in outline follow the reasoning flow depicted in Figure 12. PRET is a
general tool for linear and nonlinear SI, and its performance depends on the knowledge it has
about the target system at a given stage of the model-building process. On the contrary,
RHEOLO is tailored to a specific domain, namely the rheological behavior of viscoelastic
materials, that is, materials whose behaviors result from a suitable combination of elastic and
viscous responses.
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Figure 12 – Gray box systems: QR-based system identification process. S: physical structure;
QB and M: its qualitative behavior and mathematical model, respectively.

Let us focus on RHEOLO to illustrate the great potential, in terms of modeling soundness,
computational costs and actual applicability of QR-integrated approaches. RHEOLO aims at
the formulation of the most accurate ODE model that explains a set of observations obtained
from standard tests on a material. Let us observe that, in a quantitative context, the term
"accuracy" may be misinterpreted as referring to numerical accuracy only. But a model goes
beyond a mere fitting: it must also capture all the physical features qualitatively expressed by
the data. To exemplify this point, let us consider Figure 13: the data sets are related to two
materials which exhibit instantaneous elasticity, retarded elasticity, viscosity (Figure 13A),
and retarded elasticity, viscosity (Figure 13B), respectively. But, at a pure numerical level
they are accurately modeled by an ODE with the same mathematical structure as the
discontinuity in the data in Figure 13A at t = 0, which does represent instantaneous elasticity,
is smoothed by the numerical procedures. The identification of the appropriate mathematical
structure precedes the quantitative refinement step, and occurs on qualitative arguments only.
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In the complex domain of viscoelasticity, the mathematical knowledge and skillfulness
necessary for structural identification rarely belongs to researchers who, as designers of new
materials, would benefit from models to assess the material properties. As a matter of fact,
researchers mostly perform either (i) the material assessment experimentally, with high costs
and poor informative content, or (ii) a blind search over a possibly incomplete model space
that may yield a model that fails to capture both the material complexity and all the material
features [9].

Figure 13 – Weighted least squares fitting of the strain response of two materials with
different physical properties. The dots and the curve represent the time course of the data and

the model prediction, respectively.

The restriction to a well-defined domain largely compensates for the lack of generality. The
specific domain knowledge has allowed for the development of ad hoc qualitative methods,
and their integration with numerical and statistical ones has provided an efficient and sound
solution to the problem of associating a real viscoelastic material with its constitutive law. In
particular, thanks to these methods, a sound and complete simulation algorithm has ben
designed, which has allowed us to associate each model of an ideal material in the model
space with its qualitative behavior in response to standard experiments. On the basis of the
qualitative responses, it has been possible to provide a small but significant contribution to the
domain itself: the model space characterization and its partition into model classes featured by
the same qualitative behavior. The model space M, automatically generated following an
enumerative procedure and a component-connection paradigm in accordance with the domain
knowledge, does exhaustively represent the viscoelastic material domain, to the extent of the
underlying assumptions. Although the enumeration process has exponential complexity, the
partition of the model space into qualitatively coherent classes has allowed us to achieve
optimal, linear rather than exponential, computational costs.

Let us consider M, which consists of triples (S, QB(S), M(S)) where S is the material
composite structure the ODE model M(S) is built upon and QB(S) its simulated qualitative
behavior. Then, the subset of plausible structures is straightforward derived: by matching the
qualitative profiles of the data, obtained through Qualitative Response Abstraction (QRA),
against all the QB(S)'s in M. QRA infers a qualitative description of the observed response by
mapping geometric patterns extracted from the data plot into basic physical features.
Qualitative simulation and QRA are fundamental to guarantee physical accuracy of the
identified model as they characterize the relevant physical features of each model in the space
and of the actual material dynamics, respectively.
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Then, the best quantitative model is searched for in the candidate subset, hierarchically
organized, through an optimization loop. Such a loop is initialized with the simplest
parameterized model, and proceeds with more and more complex structures till the optimal
order of the model is found in accordance with a principle of parsimony. This loop nests the
parameter estimation procedure, aimed at evaluating the optimal parameter vector that
completely identifies the model of the material. Such a procedure uses a numerical
differentiation scheme, which must suitably be selected to calculate a sound numerical
solution. Moreover, to ensure convergence, "good" guesses must be provided for the
parameters and the initial values of the differential numerical scheme. Both numerical
problems benefit from QRA [9]: the abstracted qualitative data profile suggests both the
choice of an ODE solver capable to deal with stiff solutions and the shape of a function to be
used to calculate the initial parameter guess through a collocation method of the current ODE
on the experimental grid.

RHEOLO issues a new challenge in the practical study of materials. Due to the underlying
modeling assumptions, it finds its proper application to polymers, such as those used in
Pharmaceutics, Cosmetics, and Food Industry. Its applicative potential is shown in [47][27]: it
allowed for the model-based assessment of the mucoadhesion property of a class of
pharmaceutical polymers, candidate for use as a drug carrier in a drug delivery system.

4.2!Black box systems
The reconstruction of a relationship f between the input-output variables from observations is
a difficult problem, intensively studied [24]. Approximation schemes, directly applicable and
widely used, are neural networks, multi-variate splines, and fuzzy systems [58]. Although
successfully applied to many systems, they fail when the data set is inadequate [4]. Moreover,
the resulting model f does not capture any structural knowledge.

QR may effectively help to solve the problems above in a great deal of situations: physical
system knowledge is very often available even if insufficient to formulate a quantitative
model, and it could be conveniently embedded into black box methods. FS-QM [3] integrates
fuzzy systems with qualitative models (Figure 14). It solves the crucial problem of the
construction of a meaningful fuzzy rule-base. The mathematical interpretation of such rule-
base, automatically generated by encoding the state distinctions of the system dynamics
inferred by the qualitative simulation of a QSIM model, defines both the complexity and the
form of f. Then, the estimation of its parameter vector q, initialized accordingly to prior
information (q0), completes the SI process.

The embodiment of physical knowledge into f, brought in by qualitative models, allows us to
get efficient and robust results both in rich and poor data contexts as demonstrated by
applications of FS-QM to metabolic systems. More precisely, it has successfully been applied
(i) to study the dynamics of the blood glucose level in diabetic patients in response to insulin
therapy and meal ingestion [5], and (ii) to identify the dynamics of intracellular thiamine in
the intestine tissue. Concerning the latter system, both the classical compartmental approach
and input-output regression schemes did not provide acceptable results [4].
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Figure 14 – Black box systems: Main steps of FS-QM

5.!Conclusion and open issues
This paper highlights the mathematical foundations of formalisms proposed to mimic human
qualitative reasoning along with potential and limitations. Qualitative inferences are shown to
rely on solid theoretical ground ensuring that qualitative models are a proper abstraction of
real-valued models.

This paper is not intended at a comprehensive overview of QR. Some important aspects have
been left out like causality, which is crucial as soon as we want to explain the behavior of a
system [28][17]. But the presented concepts and tools show that QR offers a significant
modeling methodology. However, it suffers limitations that can be imputed to the generality
of the proposed approaches along with the weakness of qualitative information. The first
steps, illustrated in the paper, towards the development of QR methods tailored to specific
classes of problems, as well as their integration with numerical/statistical methods have
confirmed that unified modeling approaches may provide solutions that outperform either
pure qualitative or pure quantitative ones.

The automation of the modeling process is one of the open questions, in particular how to
bridge the conceptual and higher abstraction models of QR to engineering models [51].
Determining a set of relevant landmarks from the input/output of numerical quantitative
models is a complex task. The landmarks are indeed conceptually defined as strong invariant
points over the different operating regions of a system, which must be opposed to the very
local nature of numeric models.
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Compositional modeling is also of great interest. For current practice in numerical modeling,
the composition operation, resulting in an aggregate ODE (or constraint) model, is performed
in the head of the modeler who knows the changes underlying model fragments composition.
To be automated, this process calls for influence resolution, i.e. the process of transforming a
complete set of influences on each variable to constraints, so the resulting model will support
simulation. It hence requires the concept of influence and the explicit representation of the
phenomena occurring when assembling two fragments. Although QR has contributed to this
topic and QPT can be quoted in this respect [20][21], this remains an open issue.
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